Systematic Uncertainties in Polarimetry: RHIC $\vec{p}\vec{p}$ lessons so far

W. Schmidke/BNL for the polarimetry group

³He Workshop BNL 29.09.11

- Overview: P measurement & absolute normalization; polarimeters
- H-jet systematics backgrounds (~cancel)
 - absolute scale
- pC systematics backgrounds
 - E-scale ↔ A_N instability
 - C-target: dE/dz energy loss, multiple scattering θ
- Checks with data
- Future improvements (very truncated list)...

Overview

- Polarimeters measure lett/right asymmetric Differences in L/R acceptances, up/down luminosities $\epsilon_N = \frac{\sqrt{N_{0u}^L N_{0d}^R} \sqrt{N_{0d}^L N_{0u}^R}}{\sqrt{N_{0u}^L N_{0d}^R} + \sqrt{N_{0d}^L N_{0u}^R}}$
- Polarization \Leftrightarrow asymmetry related by analyzing power: $P = \epsilon_{N} / A_{N}$
- Statistical uncertainty on $\epsilon_{_{N}}$
- Systematic uncertainties on ϵ_{N} , A_{N}
- A_{κ} specific to process used (pp or pC), kinematic range (scattered E, θ)

Absolute normalization

- H-jet (pp scattering) uses polarized target; provides absolute scale of beam P; also $A_{N}(pp)$. But: H-jet low statistics
- Fill-by-fill H-jet \rightarrow pC: $A_N(pC) = \epsilon_N(pC)/P_{H-iet}$ normalizes pC polarimeter
- pC: high statistics, fast, transverse intensity/polarization profiles

H-jet polarimeter

Si det.:

- → E, TOF measure

Yield vs strip # 1600 vel/blu 1400 elastic 1200 fixed Ep: peaks 1000 Strip# ~ θ 800 blue forward, 600 yellow back. 400 200 10 12 14 16 TOF select scattered protons: $t = \sqrt{\frac{m_p}{2E_{kin}}}$

select elastic pp \rightarrow pp: $M_{\chi}^{2}(E_{p}, \theta_{scat}) \approx m_{p}^{2}$

p-Carbon polarimeter

Target Scan mode (~30 sec/measurement)

- Rate 10's MHz ⇒ rel. stat. uncert. 2-3%
- 4-5 measurements per fill:
 injection, ramp before/after rotators,
 @ store every 2-3 hours
- Vertical & horizontal profiles each beam
- Normalized to H-Jet over many fills

2 polarim. / RHIC ring:

TOF select scattered ¹²C 0.4<E_c<0.9 MeV

H-jet polarization

"beam", "target" identical, same A,:

forward scattered proton undetected

$$A_N(t) = -rac{\epsilon_{\mathrm{target}}}{P_{\mathrm{target}}} = rac{\epsilon_{\mathrm{beam}}}{P_{\mathrm{beam}}}$$

"unpol. beam" "unpol. target" measured avg. ↑ & ↓

avg. ↑ & ↓

polarized H-jet target recoil proton detected

Effective A_N may vary fill-to-fill with varying background

e.g. inelastic $pp \rightarrow pp + X$:

• But: same events used for beam, target ϵ same bkg., effective $A_{,,}$; \Rightarrow background ~cancels

P_{target} ~96% measured by Breit Rabi Polarimeter

- Uncert. Breit-Rabi ~2% (molecular H₂)
- Overall scale uncert. P 5

pC polarization

- pC analyzing power is determined fill-by-fill from H-jet P: $A_{N}(pC) = \epsilon_{N}(pC)/P_{H-iet}$
- To reduce large statistical uncertainty from H-jet, $A_{N}(pC)$ each pC polarimeter averaged over set of fills
- Variations of $A_N(pC)$ each measurement, within each normalization period, introduces systematic uncertainty per measurement
- <u>But:</u> fill-to-fill variations average out over large samples of fill, approach the limit of P scale uncertainty from H-jet
- Now consider systematic effects on $A_N(pC)$

pC backgrounds

- Backgrounds other than elastic $pC \rightarrow pC$ can change measured $\epsilon_{_N}$
- ullet Equivalently: background diluted sample, different effective $A_{_{N}}$
- e.g. background: events not in E_{kin}↔TOF 'banana':

Backgrounds small-ish, needs estimate

$A_N(pC) \leftrightarrow \text{energy scale}$

- Analyzing power A_N(T) very steep dependence on ¹²C kinetic energy T:
- Measure in 0.4<T<0.9 MeV;
 effective A_N from pC/H-jet ratio
- Sensitive to ¹²C energy scale: e.g. $\Delta T = 25 \text{ keV} \Rightarrow \delta A_N = 5\%$ relative
- Energy scale of scattered ¹²C major source of A_N, P uncertainty

- 1st point: the energy scale uncertainty of the Si detectors introduces uncertainty on A_N, P
- e.g. estimated dead layer in Si ~60 μg/cm²; ¹²C in T range lose ~200 keV
- uncertainty of ~10% on dead layer \Rightarrow 5% uncertainty on A_N

Ribbon target geometry

- Top view of vertical ribbon target, width w≈7µ, thickness t≈25nm:
- Angle θ flat w-side w.r.t. detector
- Entire ribbon (w,t) is bathed in beam (beam σ_y = 0.5-1 mm)
- Target may be twisted: length scale of twists ≈ 150 μ several twists across beam
- Beam-eye view of target on frame:
- Target may be loose, up to 2-3 mm play

As target sways in the \vec{p} breeze, may:

- Rotate about vertical axis, changing θ
 & path length L through target en route to detector: L∝t/sin(θ)
- May move along beam direction, changing range of scattering angles covered by detector

ribbon length ~2.5 cm

scat. C to detector

W

p-beam

¹²C energy loss in target

- Scattered ¹²C nuclei lose energy in ¹²C target en route to Si detectors
- Measured T_{meas} down-shifted from scattered T_s
- We measure over a fixed T_{meas} range
- If the changes path length changes
 given T_{meas} corresponds to different T_{scat}, A_N:
- L = $t/(2 \cdot \sin \theta)$ \Rightarrow steep change A_N as $\rightarrow 0^\circ$
- Put in #'s for C-C dE/dz, A_N(T), relative variation (%) of A_N with θ:

Loose targets ⇒ unstable orientation ⇒ unstable effective A_N

scat. C to det.

p-beam

¹²C multiple scattering in target

 The recoil ¹²C also undergo multiple Coulomb scattering, RMS angle θ_{RMS} ∝ √L/T (L=path length, T=kinetic E)

- No mult. scat. ~all perpendicular to beam
- For detector 18cm from target more material ⇒ more events larger θ, Z:

- Lower energy ⇒ larger scattering angles
- Mean energy drops at larger θ , Z:
- On top of this is the energy loss in target (previous slide)
- Consider all effects ⇒ simple simulation \(\)
 (already used for these plots)

Simple simulation

Like RHIC pC polarimeters:

- Detector 18 cm from beam, covering 1 cm along beam axis
- Maximum paths lengths in target L_{max} = (0,1,4,9)×25 nm
- Actual path length 0<L<L_{max} (scattering anywhere across target)
- Multiple scattering and energy loss through L material
- After E-loss detect ¹²C with 0.4<T_{meas}<0.9 MeV
- For these events consider effective A_N relative to A_{N0} with no scattering, E-loss
- Look at A_N/A_{N0} as function of:
 - L_{max} (varies as target rotates about vert. axis)
 - Z = detector center along beam axis, Z=0 ⊥ target (Z varies as target sways along beam axis)

Simple simulation

 A_N/A_{N0} vs. Z-det, various L_{max} :

Z = detector center along beam

Z = 0 perpendicular to target

Rotate target about vert. axis:

e.g. 1,4,9 = nominal target $90^{\circ},15^{\circ},5^{\circ}$

 $4.9 = 2 \times \text{ thick. target } 30^{\circ}, 15^{\circ}$

 $4,9 = 4 \times \text{ thick. target } 90^{\circ},45^{\circ}$

As target rotates, thickness varies
 A_N can change by >15%

 As target sways longitudinally (Z-det varies), few % shifts if target-detector ~centered; much worse if misaligned

⇒ Target orientation, alignment significant effect on A_N

that was just a simulation, we have some data \(\square

Data: A_N per pC target

- Run11 had nominal 25 nm thick targets, & a few 2×,4× thick.
- A_N <u>each target</u> determined from pC/H-jet normalization
- Relative to fixed A_{N0}
 (error bars statistical):
- Blue lines are mean
 A_N each polar.

Clear trend:

- Thick targets lower A_N
- Consistent with more E-loss in target, lower A_N
- 1x→4x consistent with previous slide

Syst. checks with data

- Check with data: some things should (ideally) be constant
- e.g. pC/H-jet ratio $\Rightarrow A_N$, here per RHIC fill:
- Error bars are stat., dominated by H-jet

Constant fit, χ²/NDOF>1
 ⇒ estimate of syst. uncert.

Syst. checks with data

- Check with data: some things should (ideally) be the same
- Have two pC polar./ring, each measurement same P
- Here ratio per RHIC fill; error bars are stat.:

- Constant fit, $\chi^2/NDOF>1 \Rightarrow$ estimate of syst. uncert.
- Data like these used to evaluate syst. uncertainties

Improvements: pC det. segment.

- Present: RHIC pC detectors segmented azimuthally
- AGS pC polar. has some longitudinally (Z) segmented detectors:

- Peak of distributions ~ Z of target w.r.t. detector
- Widths of these distributions ~ path length in target material (compare plots slide 11)
- May rotate a few RHIC detectors to longitudinal segmentation
- Maybe track Z (swaying ribbons), correlate width ↔ A_N
 - ⇒ correct for target alignment, orientation

Improvements: targets

Orientation problem:

- Circularly symmetric targets would avoid orientation stability problem
- e.g. carbon wire:
- or a carbon tube:

- Starting to look like nanotubes...
- To set the scale, present 25 nm ribbons ~115 C atoms thick

Looseness problem:

 Tight, straight ribbon would help orientation, alignment stability

- But tradeoff: tightness ← target lifetime
- Need to explore alternate technologies, geometries...

Closing

Proton polarimetry

- Targets can give largest systematic effects
- May not be all, but must study, pursue alternatives

³He polarimetry

- H-jet replacement probably very different situation
- pC lessons probably applicable for a ³HeC polarimeter